Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Transbound Emerg Dis ; 69(5): e1787-e1799, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053000

ABSTRACT

Increases in temperature and extreme weather events due to global warming can create an environment that is beneficial to mosquito populations, changing and possibly increasing the suitable geographical range for many vector-borne diseases. West Nile Virus (WNV) is a flavivirus, maintained in a mosquito-avian host cycle that is usually asymptomatic but can cause primarily flu-like symptoms in human and equid accidental hosts. In rare circumstances, serious disease and death are possible outcomes for both humans and horses. The main European vector of WNV is the Culex pipiens mosquito. This study examines the effect of environmental temperature on WNV establishment in Europe via Culex pipiens populations through use of a basic reproduction number ( R 0 ${R_0}$ ) model. A metric of thermal suitability derived from R 0 ${R_0}$ was developed by collating thermal responses of different Culex pipiens traits and combining them through use of a next-generation matrix. WNV establishment was determined to be possible between 14°C and 34.3°C, with the optimal temperature at 23.7°C. The suitability measure was plotted against monthly average temperatures in 2020 and the number of months with high suitability mapped across Europe. The average number of suitable months for each year from 2013 to 2019 was also calculated and validated with reported equine West Nile fever cases from 2013 to 2019. The widespread thermal suitability for WNV establishment highlights the importance of European surveillance for this disease and the need for increased research into mosquito and bird distribution.


Subject(s)
Culex , Culicidae , Horse Diseases , West Nile Fever , West Nile virus , Animals , Birds , Horses , Humans , Mosquito Vectors , Temperature , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/physiology
2.
Ecotoxicol Environ Saf ; 220: 112409, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1260713

ABSTRACT

A novel coronavirus (SARS-CoV-2) has caused more than 150 million confirmed infections worldwide, while it is not clear whether it affects the coastal waters. This paper proposed a biophysical model based on 16 scenarios with different virus half-life parameters to assess potential viral contamination from 25 municipal sewage outfalls into the Bohai Sea. Viral concentration maps showing spatial and temporal changes are provided based on a biophysical model under multiple scenarios. Results demonstrate that adjacent sea areas can become exposed to SARS-CoV-2 via water-borne transport from outfalls, with a higher risk in winter, because SARS-CoV-2 can be highly stable at low temperature. As coastal waters are the ultimate sink for wastewater and the epidemic will last for long time, this work is of great importance to raise awareness, identify vulnerable areas for marine mammals, and avoid the risk of exposure of tourists at bathing beach.


Subject(s)
COVID-19/transmission , SARS-CoV-2 , Seawater/virology , Sewage/virology , Wastewater/virology , Animals , Humans , Seasons , Spatio-Temporal Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL